D@ Controls and Monitoring

1 Introduction

This chapter discusses the control system architecture of ttenc@0 experiment, how EPICS
(Experimental Physics and Industrial Control System [1]) wdapted to meet the control and
monitoring requirements of a large, high-energy physics deteutdrhow a formal control system
contributes to the management of detector operations. EPICS, arateteget of software building
blocks for implementing a distributed control system, has been adapsadidfy the slow controls
needs of the DO detector (1) by extending the support for new depe @&nd an additional field bus,
(2) by the addition of a global event reporting system that augntemiexisting EPICS alarm support,
and (3) by the addition of a centralized database with supportingdoalsfining the configuration of
the control system.

2 EPICS and Its Extensions

Following the first running period for the D@ experiment, which enaded995, the computing
policy of the laboratory decreed that future experiment softwargt tme developed from platform-
independent components. Since the D@ controls and monitoring group wasarsindlé period before
the beginning of the next running period was short, recasting tsngxslow-controls system in the
new formalism was not practical.

After a brief survey of the field, the controls group selectBtClS to provide the building blocks
for our new controls effort. EPICS uses a distributed cliemesearchitecture consisting of host-level
nodes, called clients, that run application programs and Input/Output @Gam¢{tGIC) nodes, called
servers, that interface directly with the detector hardwdre.tWo classes of nodes are connected by a
local area network. Clients access process variable (PV)tsbpecthe servers using the EPICS
channel access protocol.

The principal reasons for selecting EPICS were (1) the aJayabf device interfaces that
matched or were similar to our hardware, (2) the ease withhvthie system could be extended to
include our experiment-specific devices, and (3) the existence lafge and enthusiastic user
community that understood our problems and were willing to offer advice and guidance.

One of the unique properties of the D@ detector interface is thefuke MIL-STD-1553B serial
bus for all control and monitoring operations of the detector and ofeéh&aics components located
in the remote collision hall. Since the detector is inaccesBblextended periods of time, a robust,
high-reliability communication field bus is essential. We extenBBHCS by providing a queuing
driver for MIL-STD-1553B controllers and a set of device support rositihat provided the adaptive
interface between the driver and the standard EPICS PV supports. Once these elements were in
place, all of the features of EPICS were available for use with our eatpuices.

High voltage (HV) channel control is an example of extending tse IRV record support [2]. In
this case, building a compound device from individual PV records waseasible because of the
complexity of the HV device and the speed requirements. A geH&firecord support module was
developed based upon the extended Harel state machine model [3]. ©he sapport module
provides the required, high-level behavior: (1) linear ramping witabmdic end sections, (2) retries
for convergence, (3) trip condition recovery, and (4) limits control. Desupport modules then adapt
the HV record to specific hardware devices. Although developed f&peaific device, the record
support is non-device specific and may be used for other types ofjev@tnerators that require a
similar behavior.

Using the EPICS portable channel access server, we have catsiaugateway to the SCADA-
based DMACS system that manages the D@ cryogenic and gas utilities.

3 Global Event Reporting

EPICS provides tools for handling alarms generated from PVs, inglagi operator alarm display.
However, alarms from slow controls are neither the only nor, rexdgsshe most important events in

D@ Controls and Monitoring

the D@ data acquisition system (DAQ). To process events froldAD sources, of which slow
controls is but one, we have developed a separate facility, théi&igt Event System (SES) [4], to
collect and distribute all changes of state of the detectohandiata acquisition system. The SES has a
central server that collects event messages from sen@mtscland filters them, via a Boolean
expression, for receiving clients. Sender clients, which includkX@s, connect to the server via ITC,
a locally developed, inter-task communication package based upon T$0Eké&ts. All state changes
on those clients, including alarm transitions, are sent to theersefhe client-server model has
advantages over the EPICS alarm facility, where the operafagiexplicitly connects to each PV.
There is no need to construct extensive configuration files fdnithdreds of thousands of PVs in the
slow controls system and the savings in connect time at startup can beagnific

The alarm class of SES messages receives special hamdiivgserver. The SES server maintains
the current alarm state of the entire detector so that regeslients are able to obtain the current state
when they first connect to the server. In addition to specialegiving clients that may connect to
the server, there are three standard clients: the SES ldgge3ES alarm display, and the SES alarm
watcher. The logger has a pass-all filter so that itiveseall SES messages sent to the server and
writes the messages received to a disk file. The currert stahe detector stored in the server is
relayed to users through the alarm display. There is a globadyjemation for the alarm display and the
ability to specialize the configuration for the purposes of individuatdetectors. For alarms that
compromise data quality the alarm watcher will automatiqadiyse the current run. In addition to its
monitoring and logging functions, the SES system provides the meadsstitibuting synchronizing
messages to other components of the online software system.

Software tools have been developed for mining data from the SES8lde. Hardware experts
review the log files to understand which hardware devices areblastad collaborators performing
data analysis can insure the event they are examining is real and not caasadlby the detector.

The SES server and most of the receiving clients have been coithedRython scripting language,
while many of the sending clients are coded in C or C++. \W&ipate that, for efficiency
considerations, the server may require recoding in C++ at smBrestage in the development cycle.
API's for SES clients are available in all three languages.

4 Centralized Device Database

The EPICS databases that configure the individual I0Cs aré&8&t]l files of record definitions,
the database equivalent of a PV, that are read by the 10Cs dtartigp. The EPICS system
additionally provides a higher-level construct, called a temphdigh is a parameterized collection of
record definitions. Generator files, which reference the teeglatupply the parameter values to
produce instances of these templated devices. While these icolecf files are adequate for EPICS
initialization, they are not easily accessible to host-levelcgsses that may require the same
information.

To address this problem, the D@ experiment centralized the mélelewice information in a
relational database (Oracle) [5] and provided a family opwgriwritten in the Python language, to
manage the transformation between the relational database aidPiB8, ASCIl-format files. In
addition to serving as a repository of the EPICS objects — recmrdsrd types, templates and
generators — the database also stores information about therfitbi®€s: the physical location as
well as the location and type of the devices that reside o®©tBeThe database can also accommodate
a collection of non-templated EPICS records. At the time that this document wasg@yépa database
contained ~5700 templated devices, corresponding to ~117000 process Vaaiadbldsat number is
constantly expanding

By providing scripts for bi-directional conversions, it is possibleadit collections of devices
(instances of templated devices) by extracting the parazettedevices to a generator file, modifying
the generator file with a text editor, and re-inserting threegor file into the relational database. For
large collections of devices, this three-stage process is siftgsler and faster than using a database
editor directly.

D@ Controls and Monitoring

In addition to the database management scripts, a WWW browsefagetdo the relational
database is available for the initial definition, modification, &mving of the relational database
entries.

With control system device specifications now centralized imdlaional database, they are easily
accessible to other host-level processes. This, in turn, has lesetees of extensions to the original
database schema to support the needs of other, controls-related processes.

5 Detector Configuration Management

One of the most complex tasks performed by the control systéme configuration of the detector
for specific run conditions. The set of distinct configurations, bothnwmal, data-taking and for
calibration runs, is very large; and, so, the usual technique of uploadisgeafic detector
configuration, once the required conditions are established, and sawasgaitfile for subsequent
downloading is impractical.

For ease of configuration management, the detector is repgdsas a tree with nodes at
successively deeper levels corresponding to smaller, more gpegtiairganizational units of the
detector. The terminal nodes of the tree are instances of thdeki@hdevices discussed in the
preceding database section. The intermediate nodes of the tnegilgrserve to organize the traversal
order of the subordinate nodes since the detector is, in genasitiveeto the order in which devices
are initialized. The terminal nodes, called action nodes, managerfiguration of a specific, high-
level device.

One level of intermediate node, the geographical sector, has @arsmuificance. These nodes, in
most cases, represent the individual read-out crates of theod@tigiton system and are the lowest
level in the tree hierarchy in which the sub-trees are guadntebe functionally independent. The
loading process for these nodes may be executed in paralleficsigity reducing the total time
required to configure the detector.

A single server program, COMICS [6], coded in the Python language, mamadgsi@ation of the
EPICS-accessible part of the detector. The tree nodes, batiediate and action, are all specialized
instances of a base node class that defines the majority wietiheds that characterize node behavior.
The detector tree structure is defined by a set of configaréites that are Python program segments
which instantiate instances of these nodes.

6 Operator Interfaces and Applications

The experiment selected two programming languages for developpiigadions and graphical
operator interfaces (GUIs): C++ and Python. By providing the Pytkdptiag language with an
interface to the EPICS channel access API (Application Prograenface), members of the D@
collaboration have been able to write nearly all of the operaterfaces to the experiment in a high-
level, object-oriented language. The advantages of using Python are:igfumdamentally object
oriented, (2) it has a number of high-level language constructg3aitchas an extensive library that
provides interfaces to standard UNIX and LINUX utilities. As pangg written in scripting languages
tend to be significantly easier to debug, the development timeuftating the D@ online system was
significantly reduced compared with what would have been requirechbad++ language been used
instead.

GUIs are written with the Python Tkinter interface to the Tk Kibchnd with Python Mega
Widgets, which are extensions to the standard Tkinter widget setg Whese two collections of
graphics objects, we have developed an application framework td assieveloping operator
interfaces and to provide a consistent look and feel for all visgplagis. This framework includes a
collection of specialized, graphical objects for constructing updating dispid)é values.

The experiment uses more than 40 instances of these monitispigys in the control room to
manage the detector components.

D@ Controls and Monitoring

7 Secondary Data Acquisition

Although originally intended to serve as a short-term replacefoetite primary data acquisition
system (PDAQ) during the commissioning phase of the experinfentsecondary data acquisition
system (SDAQ) is now used for a variety of run-time taskisitictudes the calibration and monitoring
of detector systems. In place of the dedicated high-speed netwarlby$sDAQ, SDAQ uses a DG
product, ITC, to transmit data packets, gathered on an IOC, to hest-pescesses. The detector-
specific components of a SDAQ application have access to aylibfe8DAQ functions that handle
gueuing of data messages between components, interrupt management alittks, run
synchronization (start/stop/pause/resume events), and prioritg-ls$eduling. Two of the sub-
detectors, SMT (Silicon Microstrip Tracker) and CFT (Censwihtillating Fiber Tracker) use the
SDAQ system: (1) SMT to monitor the performance of individuatail detector channels during a
run, and (2) CFT to calibrate the response of the fiber tracking channels.

8 Archiving EPICS Data

While extensively using EPICS records for control and monitoringsiealknost every detector
group in D@ needs to keep and have structured access to archivealU®¥. There are two major
archiving tools employed by DO: (1) the Channel Archiver [7], faecter group specific needs which
require rather fast sampling rates, immediate analysis, bstrdmerequire frequent access to the old
historical data; and (2) the EPICS/Oracle Archiver [8], for lmrga studies which require slow
sampling rates, easy access to data at any moment, and minimal maintenance

Many different Channel Archivers are running all the timetimgi several thousand PV values.
About once a week collected archives are sent to the centrail&erobotic tape storage via the SAM
data management system [9]. The Channel Archiver toolset hag uosmn-friendly interfaces,
including web-based tools, which allow data retrieval from an aednidifferent formats to generate
time plots with various options.

Specifically developed to store slowly changing data directlthenOracle database, the EPICS
Oracle Archiver, written in Python and running as a collectionroéscheduled jobs, stores about
1500 PVs with sampling rates varying from 1 minute to 1 hour. Sewsealinterfaces exist to provide
an efficient way to extract and plot archived data.

9 ACNET Gateway

For operating the DO detector, it is vital to have a fastrahable messaging connection between
DO and accelerator operations to exchange control and monitoring atfonm EPICS supplies
cryogenic and magnet data and forward proton detector pot positioroanidr rates. ACNET, in
turn, sends information about critical accelerator devices. To prdwideinterchange, we have
developed a gateway between the EPICS-based D@ control systdaireaaccelerator ACNET control
system. It is implemented as a multithreaded application imoRy using the XML-RPC server/client
model, with embedded EPICS channel access and ITC interfaces for DO clients.

D@ Controls and Monitoring

10 References

[1] L. R. Dalesio et al., “The Experimental Physics and Industrial Congsies Architecture:
Past, Present, and Future”, Proc. ICALEPCS, Berlin, Germany, 1993, pp 179-184

[2] J. F. Bartlett, “D@ High Voltage System Tutorial’, D& Note 4369

[3] D. Harel, “Statecharts: A Visual Formalism for Complex Syste@sience of Computer
Programming, 8 (1987) 231-274

[4] G. Savage, “Significant Event System Tutorial”, Internal D@ document

[5] S. Krzywdzinski, “EPICS Oracle Database Tutorial”, Internal D@ demim

[6] J. F. Bartlett, “COMICS: D@ Detector Download Tutorial”, Internal D@&ument

[7] K.Kazemir, L.R.Dalesio, “Data Archiving in EPICS”, ICALEPCS99, Bt 1999

[8] V.Sirotenko, “Oracle EPICS Archiver”, Internal D@ document

[9] I.Terekhov et al., “Distributed Data Access and Resource Managemiiet DG SAM
System”, HPDC 2001, 87

